Preliminary observations using HIV-specific transfer factor in AIDS

Giancarlo Pizza¹, Francesco Chiodo², Vincenzo Colangeli², Francesco Gritti³, Enzo Raise³, Hugh H. Fudenberg⁴, Caterina De Vinci¹ & Dimitri Viza⁵

¹Immunodiagnosis and Immunotherapy Unit, 1st Division of Urology, Ospedale S. Orsola-Malpighi, Bologna, Italy; ²Institute of Infectious Diseases, Ospedale S. Orsola-Malpighi, Bologna, Italy; ³Dept. of Infectious Diseases and Immunopathology Unit, Ospedale Maggiore, Bologna, Italy; ⁴Neuro ImmunoTherapeutics Found., Spartanburg, SC, USA; ⁵Laboratoire d'Immunobiologie, URA 1294 CNRS, Faculté de Médecine des Saints-Pères, Paris, France

Key words: AIDS, cell-mediated immunity, CD8, cytotoxic T lymphocytes, HIV, transfer factor

Abstract

Twenty five HIV-1-infected patients, at various stages (CDC II, III and IV) were treated orally with HIV-1-specific transfer factor (TF) for periods varying from 60 to 1870 days. All patients were receiving antiviral treatments in association with TF. The number of lymphocytes, CD4 and CD8 subsets were followed and showed no statistically significant variations. In 11/25 patients the number of lymphocytes increased, whilst in 11/25 decreased; similarly an increase of the CD4 lymphocytes was observed in 11/25 patients and of the CD8 lymphocytes in 15/25. Clinical improvement or a stabilized clinical condition was noticed in 20/25 patients, whilst a deterioration was seen in 5/25. In 12/14 anergic patients, daily TF administration restored delayed type hypersensitivity to recall antigens within 60 days. These preliminary observations suggest that oral HIV-specific TF administration, in association with antiviral drugs, is well tolerated and seems beneficial to AIDS patients, thus warranting further investigation.

Abbreviations: c.equ.: cell equivalent; CMI: cell-mediated immunity; D: day; DTH: delayed type hypersensitivity; KS: Kaposi's sarcoma; LMT: leucocyte migration test; PHA: phytohaemagglutinin; TF: transfer factor.

Introduction

Transfer factor (TF) has been efficaciously used for treating various viral pathologies [1-8], and several years ago preliminary observations suggested that it might have a beneficial effect in HIV-infected patients [9-10].

In a preliminary attempt to assess its clinical activity and confirm the absence of adverse side effects in AIDS patients, anti-HIV TF was produced following standard methods, i.e., by animal immunization and subsequent replication in tissue culture, and was orally administered to HIV-infected patients at various stages of the disease. Because of the constraints concerning AIDS clinical trials and the difficulties in funding a coordinated multicentric clinical study, as well as in recruiting AIDS patients, due to the fact that most patients are included in existing standard antiviral protocols which do not allow the adjunct of additional therapeutic agents, the present data have been collected by several clinicians over an extended time period, on an open trial basis.

Treatment was administered over variable time periods, the aim being for each clinician to establish that TF is compatible with conventional anti-HIV treatments and does not produce undesired side-effects, whilst it may induce beneficial clinical or laboratory reactions. In most cases, the studies were discontinued after a few months, and to this day, only 4 patients have received this therapy for more than 2 years.

However sketchy and anecdotal these observationsmay seem, they are suggestive of the role that TF may play in AIDS immunotherapy, which, it seems now, should be started as early as feasible, i.e., in seropositive patients, and continued uninterrupted for as long as possible. This TF-based immunotherapy can be associated with antivirals.

Materials and methods

Transfer factor

Six to eight week old BALB/c mice received one SQ injection of 2×10^9 viral particles of HIV-1 (strain HTLV-IIIB) [11], and simultaneously one SQ injection of 10⁶ HIV-1-infected LDV/7 cells [12]. The animals were sacrificed 21-25 days after immunization, and lymphocytes were obtained from their spleens after lysing the red blood cells by a hypotonic shock. The lymphocytes were subsequently lysed by sonication and filtered through two millipore membranes having respectively cut-off points of 1000 and 10000 Daltons. The cell dialysate was used for the induction of the LDV/7 cell line as previously described [13]. Induced cultures were grown to a total of 10^{10} cells and then harvested. They were subsequently lysed by sonication and filtered through 1000 and 10000 Dalton cut-off filters. The dialysates were freeze-dried and kept at -20°C. The HIV-1 activity of each batch was tested in the leucocyte migration test (LMT) [14,15] using formalin fixed [16] HIV-infected LDV/7 cells. The freeze-dried dialysate was mixed with lactose and encapsulated at 5×10^7 cell equivalent (c.equ.) per capsule. It was administered at an average dose of 3 capsules per week.

Patients. Patients were in stages II, III and IV, following CDC's classification (Table 1). Nineteen were males and 6 females. They received TF for variable time periods. Most initial studies were planned as phase-I clinical trials. However, when results started to be clinically encouraging, it was occasionally decided by the treating physician to continue the TF treatment for longer periods. When possible, the following parameters were assayed before/during and, in certain patients, after TF administration: WBC, total lymphocytes, platelets, CD4, CD8, NK, β 2-microglobuline and p24 antigenaemia. Skin tests were carried out in 14 patients using the multitest Mérieux.

Results

Table 1 shows variations of 3 parameters: number of total lymphocyte and CD4, CD8 subsets in 23 patients

from the day of TF administration (D0) up to D270. An overall decrease is observed at D30 in all three parameters, followed by a slight increase and stabilization of the CD4 and CD8 numbers. At the end of the observation period, the total number of lymphocytes and CD4 cells remains slightly lower, whilst the number of CD8 lymphocytes is slightly higher. The differences are not statistically significant, nor were statistically significant differences found in the evolution of the other laboratory parameters assayed. The clinical condition improved or remained stable in 20/25 patients, whilst in 5/25 a deterioration was noticed.

Some patients received TF for long periods (Tables 2-4). Patient PB1 (stage IVD)(Table 2) started AZT treatment in 1988 and TF treatment in 1990, which continued, with occasional interruptions, to this date. At the onset of TF administration he was suffering from HIV encephalitis, and survival prognosis did not exceed 6 months. For nearly 3 years the patient's follow up was irregular and was carried out by physicians not participating in the study. On his own initiative, the patient used to discontinue all treatments for short (1-3 months) periods. Nonetheless, since 1993 his followup has become more regular and he received, together with TF, combinations of AZT, DDI and 3TC. In the last 3 years a marked decrease of the total lymphocytes number and that of the 2 lymphocyte subsets was noticed. Albeit this deterioration, the patient's clinical condition has remained relatively stable over the last 5 years; he gained weight (3 kg) and has maintained normal professional activity. Herpes bouts and Kaposi's sarcoma (KS) lesions, present since 1988, were managed by conventional treatments.

The treatment of patient PB2 (stage IIB) (Table 3), sexual partner of patient PB1, followed a similar pattern of interruptions. However, the improvement from D1020, when his follow up became regular, is evident. Not only his clinical condition improved and KS lesions remained stable, but five years after the onset of TF treatment, administered in association with AZT, the number of lymphocytes, CD4, CD8 and NK cells have increased.

Table 4 shows the long term evolution of patient N.18 of Table 1. An improvement of laboratory parameters was seen soon after the onset of the TF treatment, which was added to the antivirals (AZT and DDI) the patient was receiving the 2 preceding years. The clinical condition showed dramatic improvement; fatigue and depression subsided, and the patient resumed a very active professional life. Dermal KS lesions remained stable, whilst a lung KS lesion regressed

Puictus CDC No. 5xx stage LYM. CD4 CD8 LYM. CD4			I	S			007			22			ì			2017			2170		
Sex ange LYM. CD4 CD8 LYM. CD4 LYM. CD4 LYM. CD4 LYM. CD4 LYM. CD4 LYM. CD8		CDC	Į															ŀ			Clinical
F [VD [51] 230 951 [106 135 723 1096 132 715 917 [40 60] [030 110 555 1094 120 100 101 555 1094 120 100 101 555 1094 120 100 101 555 1094 120 100 101					1	LYM.	CD4	CB CD	LYM.	G C C	ŝ	TXW.	CD4	CD CD	LYM.	CD4	CD8	LYM.	CD4	CD8	Response
F WC2 2034 6(1 923 1591 455 754 1550 421 731 1473 430 729 1620 415 691 1504 394 732 732 732 731 732 231 739 115 1401 2014 106 731 1607 130 1100 110 101 1	1	F IVI			951	1106	135	723	1096	132	715	617	140	601	1030	110	555	1094	120	534	1
F II III I60 731 I607 190 1055 1533 205 1076 1677 230 1095 1620 197 1532 212 214 105 1534 2614 103 1754 2151 1501 1770 1157 1101 1790 156 161 2014 103 130 1535 2175 355 1232 1201 1770 1151 101 101 201 2014 103 103 104 105 <td>7</td> <td>F IV(</td> <td></td> <td></td> <td>923</td> <td>1591</td> <td>455</td> <td>754</td> <td>1550</td> <td>421</td> <td>731</td> <td>1473</td> <td>430</td> <td>729</td> <td>1620</td> <td>415</td> <td>691</td> <td>1504</td> <td>394</td> <td>715</td> <td>1</td>	7	F IV(923	1591	455	754	1550	421	731	1473	430	729	1620	415	691	1504	394	715	1
M IVD 2245 22 I534 2614 I03 I754 2195 I12 1449 1862 121 1501 1790 115 1401 2014 105 M IVD 1930 256 1078 2228 330 1233 2175 335 1235 5073 350 1189 1187 101 2014 101 M IVC2 1434 178 1360 1457 535 135 515 NA N	3	F II			731	1607	190	1065	1583	205	1076	1677	230	1095	1620	190	<i>L</i> 66	1532	212	1031	2
M IVD 1930 256 1078 2228 330 1223 2176 335 1235 2073 350 1185 406 1179 1911 30 M IVC2 1242 178 577 1301 180 615 1503 203 818 1818 1815 910 670 205 989 1644 818 M IVC2 1454 107 819 135 710 875 145 813 817 847 839 851 143 818 143 818 143 818 152 830 151 143 818 152 830 151 143 818 143 818 152 830 151 143 818 143 143 818 161 182 152 833 152 193 161 183 152 152 191 151 132 191 161 182 152 <td< td=""><td>4</td><td>M IVI</td><td></td><td></td><td>1534</td><td>2614</td><td>103</td><td>1754</td><td>2195</td><td>112</td><td>1449</td><td>1862</td><td>121</td><td>1501</td><td>1790</td><td>115</td><td>1401</td><td>2014</td><td>106</td><td>1328</td><td>2/3</td></td<>	4	M IVI			1534	2614	103	1754	2195	112	1449	1862	121	1501	1790	115	1401	2014	106	1328	2/3
M IVC2 1242 78 577 1301 180 615 1503 200 8181 185 910 1670 205 989 1644 818 M IVC2 1454 107 819 1360 145 753 NA NA NA 752 165 470 862 160 421 NA 152 M IVC2 133 131 601 1485 143 153 1299 292 516 NA	5	M IVI		_	1078	2228	330	1223	2176	335	1235	2073	350	1189	1815	406	1179	1911	30	1255	1/2
M IVC2 1454 107 819 1360 145 753 NA NA NA 752 165 470 862 160 421 NA 152 M IVC2 389 301 481 993 276 435 1299 225 516 NA NA NA NA 1398 282 830 M IVC2 389 311 601 1485 145 319 1134 199 1134 199 109 2173 NA NA NA NA NA NA 1784 439 1061 1821 426 M IVC2 3264 1134 1128 3097 1291 1098 2167 992 2167 992 2167 992 2167 992 2167 992 2167 992 2167 912 1061 1821 426 73 353 1051 1831 716 713 313<	9	M IV(577	1301	180	615	1503	200	818	1881	185	910	1670	205	989	1644	818	1149	1/2
M IVC2 989 301 481 993 276 435 1299 292 516 NA NA NA I N2 1398 282 830 M IVC2 1083 131 601 1485 145 145 871 NA NA NA NA 1495 NA 715 M IVC2 1083 1314 1028 145 815 1765 145 871 NA NA NA 1495 NA 715 M IVC2 1030 1031 1235 513 566 1347 491 999 2173 NA NA 1784 439 1061 1821 426 M IVD 2016 732 353 133 1118 3087 125 1097 3186 302 127 903 1061 1821 426 410 42 42 44 440 440 440	7	M IV(819	1360	145	753	NA	AN	NA	752	165	470	862	160	421	NA	152	1015	1/2
M IVC2 103 131 601 1485 142 815 1765 145 871 NA NA NA 1495 NA 715 M II 2129 364 1136 1846 339 951 1928 NA 1134 2090 277 1284 2031 299 1191 M IVC2 2700 709 1603 1235 513 396 1347 491 999 2173 NA	8				481	993	276	435	1299	292	516	NA	NA	NA	1398	282	830				1/2
M II 2129 364 I136 1846 359 951 1928 NA I134 2030 277 1284 2031 299 1191 M IVC2 2709 709 1603 1235 513 596 1347 491 999 2173 NA NA 1784 439 1061 1821 426 M IVC2 2264 1134 1128 1387 1199 1108 2394 1129 1089 2215 1039 1108 2167 993 M IVD 2700 98 989 3864 183 1118 3087 125 1097 3186 302 2157 1039 1108 129 1061 1821 420 127 303 247 140 129 1089 2167 992 167 992 167 1692 167 167 129 1061 1821 420 1061 1292 <	6	M IV(_	601	1485	142	815	1765	145	871	NA	AN	AN	1495	ΝA	715				2/3
M IVC2 2709 709 1603 1235 513 596 1347 491 999 2173 NA NA 1784 439 1061 1821 426 M IVD 2016 752 980 1860 783 817 2240 912 839 NA NA NA 2035 1051 993 M IVD 2016 752 980 1860 783 817 2240 912 839 NA	10			_	1136	1846	359	951	1928	NA	1134	2090	277	1284	2031	299	1611				2
M IVD 2016 752 980 1860 783 817 2240 912 839 NA NA NA 2035 1051 993 M IVC2 3264 1134 1128 3478 1199 1108 2394 1129 1089 2215 1039 1108 2167 992 M IVD 2700 98 989 3864 183 1118 3087 125 1097 3186 302 1287 NA	11				1603	1235	513	596	1347	491	666	2173	NA	NA	1784	439	1061	1821	426	1076	12
M IVC2 3264 1134 1128 3478 1199 1103 2394 1129 1039 2167 992 M IVD 2700 98 989 3864 183 1118 3037 125 1097 3186 302 1237 NA NA </td <td>12</td> <td></td> <td></td> <td></td> <td>980</td> <td>1860</td> <td>783</td> <td>817</td> <td>2240</td> <td>912</td> <td>839</td> <td>NA</td> <td>AN</td> <td>NA</td> <td>2035</td> <td>1051</td> <td>993</td> <td></td> <td></td> <td></td> <td>7</td>	12				980	1860	783	817	2240	912	839	NA	AN	NA	2035	1051	993				7
M IVD 2700 98 989 3864 183 1118 3087 125 1097 3186 302 1287 NA NA <td>13</td> <td></td> <td></td> <td></td> <td>1128</td> <td>3478</td> <td>1189</td> <td>1003</td> <td>3478</td> <td>1199</td> <td>1108</td> <td>2394</td> <td>1129</td> <td>1089</td> <td>2215</td> <td>1039</td> <td>1108</td> <td>2167</td> <td>992</td> <td>1096</td> <td>5</td>	13				1128	3478	1189	1003	3478	1199	1108	2394	1129	1089	2215	1039	1108	2167	992	1096	5
M IVD 667 73 353 NA NA NA NA 672 73 295 1030 92 442 1400 126 M IVD 440 4 202 NA 133 179 123 500 5 260 410 4 F II 1000 140 560 NA NA NA NA NA 443 17 219 912 1360 122 992 759 60 M IVD 460 4 317 311 3 174 700 1 257 500 1 238 505 2 338 4 M IVD 460 8 131 31 700 1 257 500 17 238 398 4 M	14			_	686	3864	183	1118	3087	125	1097	3186	302	1287	AN	AN	NA				12
M IVD 440 4 202 NA NA 608 6 310 285 2 133 500 5 260 410 4 F II 1000 140 560 NA <	15			-	353	NA	٨N	NA	NA	AN	NA	672	73	295	1030	92	442	1400	126	644	1
F II 1000 140 560 NA A42 17 29 426 17 238 398 4 M IVD 460 4 317 311 3 174 700 1 257 500 1 248 800 2 325 615 2 M IVD 460 4 317 311 3 174 700 1 257 500 1 248 800 2 355 615 2 M IVD 100 11 710 931 9 475 672 7 372 NA	16			-	202	NA	ΝA	NA	608	9	310	285	7	133	500	s,	260	410	4	197	ε
M IVD 589 35 655 45 412 NA NA 442 17 229 426 17 238 398 4 M IVD 460 4 317 311 3 174 700 1 257 500 1 248 800 2 325 615 2 M II 1218 329 NA NA NA NA NA 1300 468 637 NA	17			_	560	NA	٨N	NA	1188	154	819	1383	179	912	1360	122	992	759	60	561	2
M IVD 460 4 317 311 3 174 700 1 257 500 1 248 800 2 325 615 2 M I 1218 329 NA NA <t< td=""><td>18</td><td></td><td></td><td></td><td>385</td><td>655</td><td>45</td><td>412</td><td>AN</td><td>AN</td><td>NA</td><td>442</td><td>17</td><td>229</td><td>426</td><td>17</td><td>238</td><td>398</td><td>4</td><td>87</td><td>ę</td></t<>	18				385	655	45	412	AN	AN	NA	442	17	229	426	17	238	398	4	87	ę
M II 1218 329 NA N	19			-	317	311	e	174	700	-	257	500	1	248	800	ы	325	615	6	351	5
F IVD 400 88 148 NA NA NA NA NA NA 630 170 246 NA NA NA M IVD 1100 11 710 931 9 475 672 7 372 NA 1377 1323 246 377 1323 246 310 310 310 310 310 310 310 310	20				AN	NA	٩N	NA	NA	AN	AN	1300	468	637	NA	ΝA	NA				1
M IVD I100 I1 710 931 9 475 672 7 372 NA NA <t< td=""><td>21</td><td>F IVI</td><td></td><td></td><td>148</td><td>NA</td><td>٨N</td><td>NA</td><td>AN</td><td>NA</td><td>NA</td><td>630</td><td>170</td><td>246</td><td>NA</td><td>AN</td><td>NA</td><td></td><td></td><td></td><td>1</td></t<>	21	F IVI			148	NA	٨N	NA	AN	NA	NA	630	170	246	NA	AN	NA				1
F IVD 1320 317 779 NA NA <th< td=""><td>22</td><td>_</td><td></td><td>_</td><td>710</td><td>931</td><td>6</td><td>475</td><td>672</td><td>1</td><td>372</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>ΝA</td><td>NA</td><td></td><td></td><td></td><td>3</td></th<>	22	_		_	710	931	6	475	672	1	372	NA	NA	NA	NA	ΝA	NA				3
1462 261 772 1674 296 804 1671 315 851 1363 293 737 1379 243 787 1328 246 797 287 291 936 305 370 783 320 337 693 329 425 523 255 363 615 310 23 23 23 17 17 17 18 17 18 18 17 17 17 16 17 13 14	23			_	677	NA	NA	NA	1566	454	783	NA	NA	NA	NA	٩N	NA				1
797 287 291 936 305 370 783 320 337 693 329 425 523 255 363 615 310 23 23 23 17 17 17 18 17 18 18 17 18 17 17 17 16 17 13 14	Mean		1462		772	1674	296	804	1671	315	851	1363	293	737	1379	243	787	1328	246	788	
23 17 17 17 18 17 18 18 17 17 17 16 17 13 14	SD		197		291	936	305	370	783	320	337	693	329	425	523	255	363	615	310	402	
	4N N		23	23	23	17	17	17	18	17	18	18	17	17	17	91	17	13	14	14	

patient N.23, age 6. 14 patients were followed for at least 270 days, and 9 for 180 days; the mean values with the standard deviation (SD) are shown at the bottom of each column. Clinical response is summarized as: 1 = improvement, 2 = stable condition, 3 clinical deterioration. N = patient's number; NA = not available; Nb = number of samples.

Tuble 1. Patients

Post TF Day	LYM.	CD4	CD8	NK	p24	TREAT.
60(Oct 1990)	1269	178	520	ND	170	AZT
1020	713	71	377	7	NA	**
1140	864	120	449	0	1000	DDI
1170	360	75	129	8	720	**
1210	756	90	347	8	620	**
1270	683	88	321	7	260	"
1300	527	42	315	6	510	42
1360	400	25	120	0	610	H
1390	400	46	199	0	540	"
1450	504	31	233	5	1300	**
1540	600	36	247	0	1250	**
1630	493	19	305	5	1550	**
1720	500	30	340	5	1275	AZT
1810	900	63	558	45	600	AZT+3TC
1870	400	20	200	8	720	3TC

Table 2. Patient PB1 (Stage IVD)

Patients' laboratory data between D60 and D1020 are not available; clinical condition remained stable throughout treatment, despite multiple KS lesions present since 1988 and HIV encephalitis since 1989. Lymphocytes (LYM), CD4 and CD8 or natural killer cells numbers are shown; p24 = values of HIV p24 antigenaemia in μ g; TREAT = asociate anti-HIV treatment.

Tab	le	3.	Patient	PB2	(Stage	IIB)
-----	----	----	---------	-----	--------	------

Post TF Day	LYM.	CD4	CD8	NK	p24	TREAT
60(Oct 1990)	1197	203	515	ND	0.0	AZT
1020	1428	228	899	186	ND	.,
1140	2065	309	1321	165	0.0	17
1170	1800	342	1134	90	0.0	**
1210	1972	276	1321	256	0.0	
1270	1950	312	1306	253	0.01	
1300	1987	298	1352	219	0.0	
1360	1676	329	856	101	0.0	"
1390	1922	274	914	173	0.0	**
1450	1890	273	844	208	0.20	**
1540	1927	289	1310	212	0.25	**
1630	1674	267	1104	201	0.0	
1720	1800	234	1332	234	0.0	
1810	1800	306	1206	216	0.0	
1870	2000	300	1380	280	0.0	

Lymphocytes (LYM), CD4 and CD8 or natural killer cells numbers are shown; p24 = values of HIV p24 antigenaemia in μg ; TREAT = associated anti-HIV treatment.

without specific therapy as did voluminous plantar warts. Nearly three years after the onset of the TF treatment, the CD8 cell number shows a slight decrease, whilst the total lymphocyte number and the CD4 subset show an increase. Table 5 shows laboratory data of patient N.16 of Table 1. Despite regular TF administration this patient failed to respond. His clinical condition showed a deterioration, parallel to his haematological parameters.

In an attempt to confirm the role of TF in restoring delayed type hypersensitivity (DTH), skin tests were carried out in 14 anergic patients (stage IVC2) using the multitest Mérieux. They were tested 30 and 60 days after initiation of daily oral TF administration (Table

Table 4. Patient N.15 (Stage IVD)

DAY	LYM.	CD4	CD8	NK	p24
0	667	73	353	0	0.04
90	672	73	295	0	0.0
120	900	81	423	0	0.0
180	1030	92	442	0	0.0
210	537	80	225	0	0.0
240	1400	126	644	14	0.0
270	888	106	390	0	0.0
330	1000	80	530	0	0.0
360	811	56	364	0	0.0
420	1044	43	282	11	0.10
450	800	43	279	8	0.80
480	1300	68	353	0	0.40
580	1118	89	570	11	NA
660	727	65	341	22	0.40
750	534	64	186	5	0.50
1030	1000	90	340	10	2.80

Patient N.15 (stage IVD) suffered from pulmonary KS. Since post TF D360 all anti-KS chemotherapy was discontinued; KS remained stable and on D750 a partial regression was noticed. Lymphocytes (LYM), CD4 and CD8 or natural killer cells numbers are shown; NA = not available; p24 = values of HIV p24 antigenaemia in μ g.

Table 5. Patient N16 (Stage IVD)

DAY	LYM.	CD4	CD8	NK	p24	TREAT
0	440	4	202	9	15	AZT
60	608	6	310	12	40	11
90	285	2	133	3	24	*
120	588	5	252	5	55	0
180	500	5	260	5	100	"
240	500	5	395	10	110	U
270	410	4	197	8	90	Ħ
300	561	5	353	11	60	
360	597	5	368	12	120	
420	46 7	1	151	10	190	17
450	262	2	146	2	85	*
480	328	NA	NA	NA	NA	n
540	455	3	205	9	800	11
580	498	4	278	20	NA	47
660	200	2	112	2	1560	*
750	100	1	45	NA	1700	11

Lymphocytes (LYM), CD4 and CD8 or natural killer cells numbers are shown; p24 = values of HIV p24 antigenaemia in μ g; TREAT = associated anti-HIV treatment.

6). 8/14 and 10/14 were found positive respectively at D30 and D60.

45

Table 6. Skin-test converion following TF administration

Day:	0	30	60
Number of patients with			
positive skin tests:	0/14	8/14*	10/14**

A group of 14 anergic AIDS patients (stage IVC2) received orally a daily dose of 5.10^7 cell equ. for 60 days. 8/14 at D30 and 10/14 (71%) at D60 showed a restored skin test response to the multitest Mérieux. *P=0.01; **P=0.0005 Fisher's exact tet was used for computing the statistical significance.

Discussion

Transfer factor was used in AIDS patients as early as 1986 [9,10]. In their study, Carey and coworkers reported that they were able to restore DTH, as assessed by skin tests, in previously anergic AIDS patients, and also to increase their in vitro blastogenic response to phytohaemagglutinin (PHA) and antigens [10]. However, the improvement in the immune response diminished after the TF injections were discontinued.

These observations are consistent with ours shown on Table 6: orally administered TF was capable of restoring skin test reactivity to recall antigens within 30-60 days of the initiation of treatment. Although these studies were not pursued, and DTH was not systematically assayed in all patients, they appear to be of interest. Indeed, they confirm observations made by Gottlieb et al. [17,18], suggesting that a 6 month treatment using IMREG^R, an immunomodulator contained in the TF dialysate, can restore DTH in ARC patients and also retard disease progression. This effect seems to be independent of TF's antigenic specificity. Moreover, a correlation between cutaneous DTH response and survival prognosis is now established, as is the in vitro IL-2 production following antigen or PHA stimulation [19]. Thus, from these data one may now surmise that TF treatment can delay disease progression, and this can be predicted by monitoring the patients' aforementioned CMI parameters.

An improvement in survival can be inferred in the present study by the clinical improvement noticed in 14/25 patients, and the stable condition of 6/25. It is worth observing that the improvement of the clinical condition is not always reflected in the assayed laboratory parameters, suggesting that the latter do not always provide an accurate picture of the clinical situation. Be that as it may, it seems pertinent to collate the clinical results of this study to those mentioned by Ortega-Fernandez et al. [20]: in a 4 year controlled trial in asymptomatic HIV-infected patients, the authors observed a significant difference in disease progression between the TF treated and the placebo group; only 3/43 (7%) of the TF receiving patients developed AIDS, whilst 27/78 (28%) AIDS cases were recorded in the control group.

The same authors report inhibition of HIV replication by dialysable leucocyte extracts obtained from pooled leucocytes of healthy volunteers. Although the mechanism of the phenomenon is not elucidated and its extrapolation to an in vivo situation, considering the concentrations involved, seems prima facie improbable, these observations corroborate the contention that the TF dialysate, as a result of the numerous moieties contained therein, is a multifacet activity product. Thus, in some pathological conditions, unspecific TF can, at least partially, restore the immune functions and achieve clinical improvement. Specificity, nonetheless, is of the essence. In this context, we report elsewhere the absence of an effect of HIV-specific TF on herpes relapses, whilst HSV-specific TF, subsequently administered to the same patients, proved efficacious in controlling the herpes bouts [21].

The evolution of the HIV infection is not predictable at the individual level; thus, several years may elapse before a seropositive patient progresses into disease, and it is now quasi-certain that not all HIV-infected patients will. Similarly, survival varies from one patient to another. These individual variations should have provided leads for the pathogenesis of the syndrome and the underlying mechanisms of resistance, as it was suggested by one of us in 1987 [22]. This has not been the case. Too confident, because of the swift advances of virology in identifying the virus, the main research effort was concentrated in comprehending its functions, in view of producing antiviral compounds capable of inhibiting its mechanisms of replication, whilst the second goal has been the preparation of a vaccine capable not only to protect against infection, but also against disease progression. In this targeted, fast moving research, implemented by the latest techniques of molecular biology, the main problem was gradually lost from sight: the syndrome itself with its CMI implications and, consequently, the patient.

However, it has eventually become obvious that *natural* mechanisms to resist the HIV infection are present, and have permitted several seropositives to escape disease, as are immune mechanisms allowing them to resist infection. Thus, although the focus of attention to CMI was long in coming, several indications were pointing out that cellular immunity was playing a crucial role in the syndrome [23–25], and

not only because one subset of its effector cells was the target of the virus. This has been discussed to some extent elsewhere [26]; suffice to report here some salient evidence. Borrow et al. [27] have shown that viraemia of symptomatic HIV-1 patients was controlled by CTL recognising gp160, an envelope glycoprotein of the virus, and the level of the HIV-specific CTL activity paralleled the efficiency of control of primary viraemia. Thus, patients with strong cytotoxic responses showed rapid reduction of acute plasma viraemia and antigenaemia, whilst, contrariwise, both viraemia and antigenaemia were poorly controlled in patients with low gp160-specific cytotoxic activity. Rowland Jones et al. [28] have reported that certain Gambian prostitutes, who remained uninfected (both PCR- and sero-negative) despite multiple unprotected sexual intercourse, presented HIV-specific CTL lymphocytes. This observation not only implies that CMI plays a key role in AIDS, but also suggests that it can prevent infection.

Contrasting to the failure of humoral immunity to control the virus, because of its high mutation rate, CMI seems able to overcome this aspect. Indeed, the sexual partners of the Gambian prostitutes offer a vast array of viral strains without succeeding in breaking the immune resistance of the recipient. Thus, the contention - discussed elsewhere [26] - that specific TF might be used as a prophylactic vaccine against HIV infection finds support in clinical and laboratory data. However, the prophylactic use of TF is not novel. In a thorough clinical trial, Steele et al. have shown that VZV-specific TF can protect immunocompromised leukaemic children from varicella zoster infections [1], whilst Viza et al., using HSV-specific TF, protected mice against HSV lethal challenge [5].

The data reported here are consistent with clinical results obtained with specific TF in treating other viral infections. When they are collated with the data reported in recent years on the role of the CMI in controlling the HIV infection, they make the investigation of the use of HIV-specific TF for the management, and even the prevention of AIDS, urgent and compelling.

Acknowledgements

The work in Italy was partially funded by the Fondation Asclepios.

References

- Steele RW, Myers MG & Vincent MM. Transfer factor for the prevention of varicella zoster infection in childhood leukemia. New Engl J Med 1980; 303: 355–359.
- Viza D, Rosenfeld F, Phillips J, Vich JM, Denis J, Bonissent JF, Dogbe K. Specific bovine transfer factor for the treatment of herpes infections. In: Kirkpatrick CH, Burger DR, Lawrence HS, eds. Immunobiology of transfer factor. New York: Academic Press, 1983; 245–259.
- Dwyer JM: The use of antigen specific transfer factor in the management of infections with herpes viruses. In: Immunobiology of Transfer Factor. Eds. Kirkpatrick CH, Burger DR & Lawrence HS. New York: Academic Press, 1983: 233–42.
- Viza D, Vich JM, Phillips J, Rosenfeld F. Orally administered specific transfer factor for the treatment of herpes infections. Lymphok Res 1985; 4: 27–30.
- Viza D, Vich JM, Phillips J, Rosenfeld F, Davies DAL. Specific transfer factor protects mice against lethal challenge with herpes simplex virus. Cell Immun 1986; 100: 555–62.
- Roda E, Viza D, Pizza G, Mastroroberto L, Phillips J, De Vinci C & Barbara L. Transfer factor for the treatment of HBsAgpositive chronic active hepatitis. P Soc Exp Med 1985; 178: 468–475.
- Neequaye J, Viza D, Pizza G, Levine PH, De Vinci C, Ablashi DV, Biggar RJ & Nkrumah FK. Specific transfer factor with activity against Epstein-Barr virus reduces late relapse in endemic Burkitt's lymphoma. Anticanc R 1990; 10: 1183– 1187.
- Nkrumah F, Pizza G, Viza D, Phillips J, De Vinci C & Levine P. Regression of progressive lymphadenopathy in a young child with acute cytomegalovirus (CMV) infection following the administration of transfer factor with specific anti-CMV activity. Lymphok Res 1985; 4: 237–241.
- Viza D., Lefesvre A., Patrasco M., Phillips J., Hebbrecht N., Laumond G., Vich J.M. A preliminary report on three AIDS patients treated with anti-HIV specific transfer factor. J Exp Path 1987; 3: 653–659.
- Carey J, Lederman M, Toosi Z, Edmonds K, Hodder S, Calatrese L, Proffitt M, Johnson C, Ellner J. Augmentation of skin test reactivity and lymphocyte blastogenesis in patients with AIDS treated with Transfer Factor, JAMA 1987; 257: 651–55.
- Popovic M, Sarngadharan MG, Read E & Gallo RC. Detection isolation and continuous production of cytopathic human T-lymphotrophic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 1984; 224: 497–500.
- Viza D, Boucheix Cl, Césarini JP, Ablashi DV, Armstrong G, Levine PH, Pizza G. Characterization of a human lymphoblastoid cell line, LDV/7, used to replicate transfer factor and immune RNA. Bio Cell 1982; 46: 1-10.
- Viza D, Goust JM, Moulias R, Trejdosiewicz LK, Collard A, Mueller-Bérat N. In vitro production of transfer factor by lymphoblastoid cell lines. Transplan P 1975; VII (suppl. 1): 329– 33.
- Søberg M, Bendixen G. Human lymphocyte migration as a parameter of hypersensitivity. Acta Med Scand 1967; 181: 247-53.

- Centifanto YP, Zam ZS, McNeil JL, Kaufman HE. Leukocytes migration inhibitory factor in HSV infections. Invest Ophtalm Vis Sci 1978; 17: 863–68.
- Ross CE, Cochran AJ, Hoyle DE, Grant RM, Mackie RM. Formalin-fixed tumour cells in the leukocytes migration test. Lancet, 1973; ii, 1087.
- Gottlieb MS, Zackin RA, Fiala M, Henry DH, Marcel AJ, Combs KL, Vieira J, Liebman HA, Cone LA, Hillman KS & Gottlieb AA. Response to treatment with the leukocytederived immunomodulator IMREG-1 in immunocompromised patients with AIDS-related complex: A multicanter, doubleblind, placebo-controlled trial. Ann Int Med 1991; 115: 84–91.
- Gottlieb AA, Sizemore RC, Gottlieb MS & Kern CH. Rationale and clinical results of using leucocyte-derived immunosupportive therapies in HIV disease. Biotherapy, this issue.
- Dolan MJ, Clerici M, Blatt SP, Hendrix CW, Melcher GP, Boswell RN, Freeman TM, Ward W, Hensley R & Shearer GM. In vitro T cell function, delayed-type hypersensitivity skin testing, and CD4+ T cell subset phenotyping independently predict survival time in patients infected with human immunodeficiency virus. J Infect Dis 1995; 172: 79-87.
- Fernandez-Ortega C, Dubed M, Ruibal O, Vilarrubia OL, Menéndez de San Pedro JC, Navea L, Ojeda M & Araña MJ. Inhibition of in vitro HIV infection by dialysable leucocyte extracts. Biotherapy, this issue.
- Pizza G, Viza D, De Vinci C, Palareti A, Cuzzocrea D, Fornarola V & Baricordi V. Orally administered HSV-specific transfer factor (TF) prevents genital or labial herpes relapses. Biotherapy, this issue.
- 22. Viza D. "The AIDS panic" Nature 1985; 317; 281.
- Auger I, Thomas P & DeGruttola V. Incubation periods for pediatric AIDS patients. Nature 1988; 336: 575–77.
- Clerici M, Berzofsky JA, Shearer GM & Tacket CO. Exposure to human immunodeficiency virus type 1; specific T helper cell responses before detection of infection by polymerase chain reaction and serum antibodies. J Infect Dis 1991; 164: 178-82.
- Clerici M, Giorgi JV, Chou CC, Gudeman VK, Zack JA, Gupta P, Ho HN, Nishanian PG, Berzofsky JA & Shearer GM. Cellmediated immune response to human immunodeficiency virus (HIV) type 1 in seronegative homosexual men with recent exposure to HIV-1. J Infect Dis 1992; 156: 1012–19.
- 26. Viza D. AIDS and Transfer Factor: Myths, Certainties and Realities. Biotherapy, this issue.
- Barrow P, Lewicki H, Hahn BH, Shaw GM & Oldstone MBA. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol 1994; 68: 6103-10.
- Rowland-Jones A, Sutton J, Ariyoshi K, Dont T, Gotch F, McAdam S, Whitby D, Sabally S, Gallimore A, Corrah T, Takaguchi M, Schultz T, McMichael A & Whittle H. HIVspecific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nature Medicine 1995; 1: 59-64.

Address for correspondence: Dr. G. Pizza, Immunodiagnosis and Immunotherapy Unit, 1st-Division of Urology, S. Orsola-Malpighi Hospital, Via P. Palagi 9, 40138 Bologna, Italy.